Group Theory
Week #6, Leduce #21
Lemma If a group G has a subgroup H of index y,
then G also has a wormal subgroup N continued in H)
such that the index of N divides N!

$$[G:H]=N \implies T N CH, N AG, G:N]N!$$

Us dres pablem in the Sock with N=3, with shaper analysis
() when n=2, this recover result: $G:H]=2 \implies H AG$
 $[G:H]=2 \implies N-H$
 $G:M=2, this recover result: $G:H]=2 \implies H AG$
 $[G:H]=2 \implies N-H$
 $[G:H]=2 \implies S(G:H]$
 $[G:H]=2 \implies S(G:H] = So S har size n$
Associated to this action there is a humomorphism
 $P:G \implies Sym(S) = Sn$
 $P(G) (XH) = GXH$
 $[G:H]=M=H$; $GN \implies gXH=XH$, $YXEG$
 $[H]=H = SgeH =$
 $[H]=H \implies SgeH = XH = SH$$

But
$$|G/_{H}| = EGINJ$$

 $|Im(\Psi)| ||S_{N}| = N!$
 $|G_{W}| = IGINJ = n!$
 $|G_{W}| = IM(\Psi) IISNI=N!$
 $EGINJ = |f/_{Y}| = IM(\Psi) IISNI=N!$
 IDD
 $|DD|$
 $|DD|$

more generally:
$$m\mathbb{Z} + n\mathbb{Z} = \gcd(m,n)\cdot\mathbb{Z}$$

Proposition $[HK \leq G \iff HK = KH]$
is, HK is a sing oup of G if and only if
 $[\forall h_1 \in H_1, \forall k_1 \in K_2, \exists k_2 \in K, h_2 \in H \quad such that]$
 $h_1 K_1 = K_2 h_2.$
Proof (\Longrightarrow) If HK is a subgroup, then, $\forall h_1, k_1, h_2, k_2$
 $(i) \exists h_3, k_3$ st $(h_1 k_1)^{-1} \in [k_1^{-1}h_1^{-1} = h_4 k_4]$
 $[HK \leq KH]$: $h_1 k_1 \in HK \implies h_1 k_1' = (k_1^{-1}h_1^{-1})^{-1}$
 $[KH \in HK] - symmetric kignment]$
 (\Leftarrow) If $HK = KH_1$, then $(\forall h_1 k_1, \exists h_2, k_2, t. h_1 k_1 = k_2' h_2' \in KH$
 (\Leftarrow) If $HK = KH_1$, then $(\forall h_1 k_1, \exists h_2, k_2, t. h_1 k_1 = k_2' h_2')$
 $Take x_1 h_{k_1}$ and $\forall h_2 k_2$ in H_3 then:
 $x_1 x_2^{-1} (h_1 k_1) \cdot (h_2 k_2)^{-1} = h_1 k_1 k_1 (h_2^{-1})^{-1} \in HK$
 $\therefore HK \leq G$
Corollary If $H \leq N(K)$, then $HK \leq G$
Comment the condition $H \leq N(K)$ means:
 $[h K h^{-1} \leq K, Vh \in H]$
 $F_1 K h^{-1} \in K, Vh \in H]$

Prop Let G be a finite group and H, K
two subgroups. Then
$$|HK| = \frac{|H| \cdot |K|}{|H \cap K|}$$

Proof (next time)